A Subexponential Lower Bound for Policy Iteration based on Snare Memorization
نویسنده
چکیده
This paper presents a subexponential lower bound for the recently proposed snare memorization non-oblivious strategy iteration algorithm due to Fearnley. Snare memorization is a method to train policy iteration techniques to remember certain profitable substrategies and reapply them again. We show that there is not much hope to find a polynomial-time algorithm for solving parity games by applying such non-oblivious techniques. ∗Department of Computer Science, University of Munich, Germany. E-mail: [email protected].
منابع مشابه
A subexponential lower bound for the Least Recently Considered rule for solving linear programs and games
The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Cunningham’s Least Recently Considered rule [5], which belongs to the family of history-based rules. Also known as t...
متن کاملA Subexponential Lower Bound for Zadeh's Pivoting Rule for Solving Linear Programs and Games
The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Zadeh’s pivoting rule [Zad80]. Also known as the Least-Entered rule, Zadeh’s pivoting method belongs to the family o...
متن کاملSubexponential lower bounds for randomized pivoting rules for solving linear programs
The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most deterministic pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for randomized pivoting rules. We provide the first subexponential (i.e., of the form 2 α), for some α > 0...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملA full Nesterov-Todd step interior-point method for circular cone optimization
In this paper, we present a full Newton step feasible interior-pointmethod for circular cone optimization by using Euclidean Jordanalgebra. The search direction is based on the Nesterov-Todd scalingscheme, and only full-Newton step is used at each iteration.Furthermore, we derive the iteration bound that coincides with thecurrently best known iteration bound for small-update methods.
متن کامل